• 文献标题:   Pd nanospheres decorated reduced graphene oxide with multi-functions: Highly efficient catalytic reduction and ultrasensitive sensing, of hazardous 4-nitrophenol pollutant
  • 文献类型:   Article
  • 作  者:   VILIAN ATE, CHOE SR, GIRIBABU K, JANG SC, ROH C, HUH YS, HAN YK
  • 作者关键词:   catalytic reduction, palladium nanoparticle, gum arabic, reduced graphene oxide, 4nitrophenol
  • 出版物名称:   JOURNAL OF HAZARDOUS MATERIALS
  • ISSN:   0304-3894 EI 1873-3336
  • 通讯作者地址:   Dongguk Univ Seoul
  • 被引频次:   47
  • DOI:   10.1016/j.jhazmat.2017.03.015
  • 出版年:   2017

▎ 摘  要

We illustrate a facile approach for in situ synthesis of Pd-gum arabic/reduced graphene oxide (Pd-GA/RGO) using GA as the reducing agent, which favors the instantaneous reduction of both Pd ions and GO into Pd nanoparticles (NPs) and RGO. From the morphological analysis of Pd-GA/RGO, we observed highly dispersed spherical 5 nm Pd NPs decorated over RGO. The as-synthesized Pd-GA/RGO composite was employed for the catalytic reduction and the electrochemical detection of 4-nitrophenol (4-NP), respectively. The catalytic reduction of 4-NP was highly pronounced for Pd-GA/RGO (5 min) when compared to Pd NPs (140 min) and Pd/RGO (36min). This enhanced catalytic activity was attributed to the synergistic effect of Pd NPs and the presence of various functional groups of GA. Significantly, the fabricated sensor offered a low detection limit (9 fM) with a wider linear range (2-80 pM) and long-term stability. The simple construction technique, high sensitivity, and long-term stability with acceptable accuracy in wastewater samples were the main advantages of the developed sensor. The results indicated that the as-prepared Pd-GA/RGO exhibited better sensing ability than the other graphene-based modified electrodes. Therefore, the proposed sensor can be employed as a more convenient sensing platform for environmental and industrial pollutants. (C) 2017 Elsevier B.V. All rights reserved.