• 文献标题:   Density functional theory study of chemical sensing on surfaces of single-layer MoS2 and graphene
  • 文献类型:   Article
  • 作  者:   MEHMOOD F, PACHTER R
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF APPLIED PHYSICS
  • ISSN:   0021-8979 EI 1089-7550
  • 通讯作者地址:   Air Force Res Lab
  • 被引频次:   17
  • DOI:   10.1063/1.4871687
  • 出版年:   2014

▎ 摘  要

In this work, density functional theory (DFT) calculations have been used to investigate chemical sensing on surfaces of single-layer MoS2 and graphene, considering the adsorption of the chemical compounds triethylamine, acetone, tetrahydrofuran, methanol, 2,4,6-trinitrotoluene, o-nitrotoluene, o-dichlorobenzene, and 1,5-dicholoropentane. Physisorption of the adsorbates on free-standing surfaces was analyzed in detail for optimized material structures, considering various possible adsorption sites. Similar adsorption characteristics for the two surface types were demonstrated, where inclusion of a correction to the DFT functional for London dispersion was shown to be important to capture interactions at the interface of molecular adsorbate and surface. Charge transfer analyses for adsorbed free-standing surfaces generally demonstrated very small effects. However, charge transfer upon inclusion of the underlying SiO2 substrate rationalized experimental observations for some of the adsorbates considered. A larger intrinsic response for the electron-donor triethylamine adsorbed on MoS2 as compared to graphene was demonstrated, which may assist in devising chemical sensors for improved sensitivity. (C) 2014 AIP Publishing LLC.