• 文献标题:   Dispersive solid phase extraction based on reduced graphene oxide modified Fe3O4 nanocomposite for trace determination of parabens in rock, soil, moss, seaweed, feces, and water samples from Horseshoe and Faure Islands
  • 文献类型:   Article
  • 作  者:   TEKIN Z, KARLIDAG NE, OZDOGAN N, KOCOGLU ES, BAKIRDERE S
  • 作者关键词:   paraben, reduced graphene oxide, magnetic nanoparticle, high performance liquid chromatography, antarctica
  • 出版物名称:   JOURNAL OF HAZARDOUS MATERIALS
  • ISSN:   0304-3894 EI 1873-3336
  • 通讯作者地址:  
  • 被引频次:   7
  • DOI:   10.1016/j.jhazmat.2021.127819 EA JAN 2022
  • 出版年:   2022

▎ 摘  要

This study reports an efficient, green, sensitive and simple analytical protocol for trace determination of methyl paraben, ethyl paraben, propyl paraben, butylparaben and benzyl paraben by high-performance liquid chromatography-ultraviolet detection (HPLC-UV). The analytes were preconcentrated using an ultrasonication supported (US) dispersive solid phase extraction (DSPE) method based on reduced graphene oxide (rGO) modified iron nanoparticles (US-Fe3O4@rGO-DSPE). A reversed-phase C18 column and an isocratic elution program comprising of 20 mM phosphate buffer (pH 4.50) and acetonitrile(58:42, v/v) were used to elute and separate the analytes for detection. The limits of detection determined for the analytes were very low and were in the range of 0.02 - 0.16 ng mL-1. The coefficients of determination obtained for the analytes ranged from 0.9973 to 0.9998, and this validated good linearity of the method.Percent relative standard deviations obtained in the range of 2.5 - 10.6% verified the method's high intraday repeatability. Accuracy of the proposed method was assessed with spiking experiments performed on complex sample matrices. Percent recoveries calculated for spiked soil, artificial seawater and seaweed samples were in acceptable ranges of 95 - 121%, 87 - 117% and 85 - 111%, respectively. These figures of merit suggest that HPLC-UV coupled with the US-Fe3O4@rGO-DSPEmethod is suitable for the determination of parabens in Antarctic samples.