• 文献标题:   Performance, combustion, and emission characteristics of a diesel engine fueled with Jatropha methyl ester and graphene oxide additives
  • 文献类型:   Article
  • 作  者:   ELSEESY AI, HASSAN H, OOKAWAR S
  • 作者关键词:   jatropha methyl ester, graphene oxide, diesel engine, heat release rate, engine performance, emission characteristic
  • 出版物名称:   ENERGY CONVERSION MANAGEMENT
  • ISSN:   0196-8904 EI 1879-2227
  • 通讯作者地址:   E JUST
  • 被引频次:   11
  • DOI:   10.1016/j.enconman.2018.04.049
  • 出版年:   2018

▎ 摘  要

The present experimental study aims at investigating the impact of adding graphene oxide nanoparticles (GO) to neat Jatropha Methyl Ester (JME) on a single cylinder air cooled direct injection four stroke diesel engine. The nano-fuels have been prepared from 25, 50, 75 and 100 mg/l concentrations of graphene oxide with neat Jatropha biodiesel through ultrasonication process. The graphene oxide nanoparticles crystallite size, morphology, and the chemical structures were examined using X-ray diffraction (XRD), Transmission Electron Microscope (TEM), and Fourier-transform infrared spectroscopy (FTIR), respectively. The compression ignition engine characteristics were investigated by the four JME-GO blends, and their results were compared with neat JME under various engine loads at a constant engine speed of 2000 rpm. The results indicate that the diesel engine operated by JME-GO nano-fuels enhanced the brake thermal efficiency by 17% compared to neat JME fuel. Furthermore, the peak cylinder pressure, the highest rate of pressure rise, and maximum heat release rate were also increased by 8%, 6%, and 6%, respectively. The CO and UHC emissions were decreased significantly by 60% and 50%, respectively, for JME-GO blends compared to pure JME fuel. At high engine load, the NOx emission was reduced by 15% for JME-GO blends compared to pure Jatropha biodiesel. The results also illustrated that the concentration of 50 mg/L had the optimum improvement in the overall characteristics of engine performance and emissions.