▎ 摘 要
To date, wearable sensors are increasingly finding their way into application of healthcare monitoring, body motion detection and so forth. A stretchable and wearable strain senor was fabricated on the basis of commercially available spandex/nylon fabric by the integration of conductive graphene network. Specifically, a simple graphene oxide dip-reduce method that enabled scalable fabrication pathway was employed. The good recovery of the graphene-coated fabric led to consistent resistance values despite the strain applied on the fabric and exhibited high gauge factor around 18.5 at 40.6% strain. Moreover, the graphene-coated fabric sensor could detect human motions such as finger bending with acceptable mechanical properties against un-coated fabrics, indicating that it has huge potential in wearable sensors applications.