▎ 摘 要
In this study, the effects of nitrogen atom substitution and curvature on the thermal conductivity of graphene are studied using non-equilibrium molecular dynamics (NEMD) simulations. Using the optimized Tersoff potential proposed by Lindsay and Broido [L Lindsay, D.A. Broido, Phys. Rev. B 82 (2010)205441], the predicted thermal conductivity of graphene is close to the experimental range. It was observed that only 1% concentration of nitrogen doping in graphene decreases the thermal conductivity of graphene by more than 50% and removes its chirality dependency. Our simulations also show that graphene is a high flexible structure and suggest limited curvature effects on its thermal conductivity. (C) 2011 Elsevier Ltd. All rights reserved.