▎ 摘 要
The exploration of high-efficiency electrocatalysts for the hydrogen evolution reaction (HER) is of great significance for sustainable energy conversion applications, yet it remains a grand challenge. Herein, a facile and rapid strategy to synthesize ultrafine PtNi nanoparticles (NPs) anchored on N-doped graphene (rGO(N)) (labeled as PtNi/rGO(N)) at room temperature is demonstrated. (3-Aminopropyl) triethoxysilane (APTES) is selected as an effective nitrogen source to form two kinds of nitrogen (doping N and amine N) simultaneously for fabricating a rGO(N) matrix during the chemical reduction process. Benefiting from the bimetallic synergistic effect and strong metal-support interactions, this composite is expected to accelerate H+ adsorption and H-2 desorption and reduce the transport resistance of electrons and hydrogen intermediates. As a consequence, the PtNi/rGO(N) with ultralow Pt loading amount (1.2 mu g per electrode area (cm(2))) exhibits extraordinary catalytic activity with a small overpotential of 98 mV at a current density of 10 mA mu g(Pt)(-1) and an exceptional Tafel slope of 42.7 mV dec(-1) for HER, exceeding the incumbent commercial Pt/C catalyst. Moreover, the PtNi/rGO(N) also displays excellent stability with negligible current degradation during a continuous operation for 20 h. The present work would be proposed as an elegant platform toward the exploration of efficient HER electrocatalysts for various renewable energy conversion applications.