• 文献标题:   Effects of long-range disorder and electronic interactions on the optical properties of graphene quantum dots
  • 文献类型:   Article
  • 作  者:   ALTINTAS A, CAKMAK KE, GUCLU AD
  • 作者关键词:  
  • 出版物名称:   PHYSICAL REVIEW B
  • ISSN:   2469-9950 EI 2469-9969
  • 通讯作者地址:   Izmir Inst Technol
  • 被引频次:   5
  • DOI:   10.1103/PhysRevB.95.045431
  • 出版年:   2017

▎ 摘  要

We theoretically investigate the effects of long-range disorder and electron-electron interactions on the optical properties of hexagonal armchair graphene quantum dots consisting of up to 10 806 atoms. The numerical calculations are performed using a combination of tight-binding, mean-field Hubbard, and configuration interaction methods. Imperfections in the graphene quantum dots are modeled as a long-range random potential landscape, giving rise to electron-hole puddles. We show that, when the electron-hole puddles are present, the tight-binding method gives a poor description of the low-energy absorption spectra compared to mean-field and configuration interaction calculation results. As the size of the graphene quantum dot is increased, the universal optical conductivity limit can be observed in the absorption spectrum. When disorder is present, the calculated absorption spectrum approaches the experimental results for isolated monolayers of graphene sheets.