▎ 摘 要
In this study, we developed and characterized a new dopamine (DA) sensor based on the reduced graphene oxide (rGO)-carbon dot composite film with high sensitivity, nice specificity and good stability. The carbon dots (CDs) had carboxyl groups with negative charge, which not only provided good stability, but also enabled interaction with amine functional groups in DA through electrostatic interaction to enhance the specificity of DA with high specificity, and the interaction and electron communication between rGO and DA can be further strengthened via pi-pi stacking force. Under optimal conditions, the rGO-CDs electrode (GCE) showed better electrochemical response towards the detection of DA than the bare GCE, GO/GCE and CDs/GCE. A linear relationship between the oxidation peak current of DA and its concentration could be obtained in a range from 0.01000 mu M to 450.0 mu M with the limit of detection as 1.5 nM (3S/N). Furthermore, rGO-CDs/GCE exhibited good ability to suppress the background current from large excess ascorbic acid (AA) and uric acid (UA). Meanwhile, the rGO-CDs/GCE also was applied to the detection of DA content in the injection of DA with satisfactory results, and the biosensor could keep its activity for at least a month. (C) 2014 Elsevier Ltd. All rights reserved.