▎ 摘 要
Hexagonal boron nitride (h-BN) and its heterostructures with graphene are widely investigated van der Waals (vdW) quantum materials for electronics, photonics, sensing, and energy storage/transduction. However, their metal catalystbased growth and transfer-bases' eterostructure assembly approaches present impediments to obtaining high-quality and wafer-scale quantum material. Here, we have presented our perspective on the synthetic strategies that involve direct nucleation of h-BN on various dielectric substrates and its rieterostructures with graphene. Mechanistic understan ing of direct growth of h-BN via bottom-up approaches such as (a) the chemical-interaction guided nucleation on silicon-based dielectrics, (b) surface nitridation and N+ sputtering of h-BN target on sapphire, and (c) epitaxial growth of h-BN on sapphire, among others, are reviewed. Several design methodologies are presented for the direct growth of vertical and lateral vdW heterostructures of h-BN and graphene. These complex 2D heterostructures exhibit various physical phenomena and could potentially have a range of practical applications.