▎ 摘 要
We proposed and numerically investigated a coupled photonic crystal nanobeam (PCN) cavity-waveguide system which is composed of a bus waveguide and two one-dimensional PCN cavities, acting as bright and dark mode cavities, to achieve a distinct electromagnetically induced transparency analogue (EIT-like) effect by changing the near-field coupling strength between two cavities. By further integrating with graphene on top of the dark mode cavity, the three-dimensional finite-difference time-domain simulation results show that the generated EIT-like transparency window can be actively tuned and a complete on-to-off modulation of the EIT-like effect is realized by electrically tuning the graphene's Fermi level without reoptimizing or refabricating the structure. Theoretical analysis based on the coupled mode theory is then conducted and the results are highly consistent with the numerical results. In addition, we demonstrated that the group delay of the system can also be actively modulated by changing the Fermi level of graphene, achieving a well-controlled slow light effect. Our proposed coupled PCN cavity-waveguide system, combining the merits of PCN cavity and graphene in a single device, may provide a new platform for applications in chip-integrated slow light devices, tunable switches, optical modulators and high-sensitive sensors. (C) 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreement