▎ 摘 要
A novel synthesis procedure is devised to obtain nitrogen-doping in hydrogen-exfoliated graphene (HEG) sheets. An anionic polyelectrolyteconducting polymer duo is used to form a uniform coating of the polymer over graphene sheets. Pyrolysis of graphene coated with polypyrrole, a nitrogen-containing polymer, in an inert environment leads to the incorporation of nitrogen atoms in the graphene network with simultaneous removal of the polymer. These nitrogen-doped graphene (N-HEG) sheets are used as catalyst support for dispersing platinum and platinumcobalt alloy nanoparticles synthesized by the modified-polyol reduction method, yielding a uniform dispersion of the catalyst nanoparticles. Compared to commercial Pt/C electrocatalyst, PtCo/N-HEG cathode electrocatalyst exhibits four times higher power density in proton exchange membrane fuel cells, which is attributed to the excellent dispersion of PtCo alloy nanoparticles on the N-HEG support, the alloying effect of PtCo, and the high electrocatalytic activity of the N-HEG support. A stability study shows that Pt/N-HEG and PtCo/N-HEG cathode electrocatalysts are highly stable in acidic media. The study shows two promising electrocatalysts for proton exchange membrane fuel cells, which on the basis of performance and stability present the possibility of replacing contemporary electrocatalysts.