• 文献标题:   Generation of Defective Few-Layered Graphene Mesostructures by High-Energy Ball Milling and Their Combination with FeSiCuNbB Microwires for Reinforcing Microwave Absorbing Properties
  • 文献类型:   Article
  • 作  者:   LOPEZSANCHEZ J, PENA A, SERRANO A, DEL CAMPO A, DE LA FUENTE OR, CARMONA N, MATATAGUI D, HORRILLO MD, RUBIOZUAZO J, NAVARRO E, MARIN P
  • 作者关键词:   highenergy ball milling, defective fewlayered graphene mesostructure, confocal raman microscopy, electromagnetic absorbing composite, fesinbcub microwire, microwave absorbing paint
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244 EI 1944-8252
  • 通讯作者地址:  
  • 被引频次:   0
  • DOI:   10.1021/acsami.2c19886 EA JAN 2023
  • 出版年:   2023

▎ 摘  要

Defective few-layered graphene mesostructures (DFLGMs) are produced from graphite flakes by high-energy milling processes. We obtain an accurate control of the generated mesostructures, as well as of the amount and classification of the structural defects formed, providing a functional material for microwave absorption purposes. Working under far-field conditions, competitive values of minimum reflection loss coefficient (RLmin) = -21.76 dB and EAB = 4.77 dB are achieved when DFLGMs are immersed in paints at a low volume fraction (1.95%). One step forward is developed by combining them with the excellent absorption behavior that offers amorphous Fe73.5Si13.5B9Cu1Nb microwires (MWs), varying their filling contents, which are below 3%. We obtain a RLmin improvement of 47% (-53.08 dB) and an EAB enhancement of 137% (4 dB) compared to those obtained by MW-based paints. Furthermore, a f(min) tunability is demonstrated, maintaining similar RLmin and EAB values, irrespective of an ideal matching thickness. In this scenario, the Maxwell-Garnet standard model is valid, and dielectric losses mainly come from multiple reflections, interfacial and dielectric polarizations, which greatly boost the microwave attenuation of MWs. The present concept can remarkably enhance not only the MW attenuation but can also apply to other microwave absorption architectures of technological interest by adding low quantities of DFLGMs.