▎ 摘 要
We investigate structural and electronic properties of graphene-based one-dimensional (1D) superlattices by means of first-principles calculations. The 1D superlattices are modeled by three different chemical and structural modifications of the carbon lattice. We study partial hydrogenation of graphene, substitution of carbon-atom pairs by boron and nitrogen atoms, and incorporation of ribbons of the recently discovered silicene. Our investigations based on density functional theory provide accurate predictions of structural and electronic properties of all systems under consideration. In detail, the formation of 1D interfaces between two-dimensional honeycomb crystals is studied, including the construction of a coincidence lattice. The importance of the interface for the energy alignment and the Fermi-level position is proven. Finally, we discuss the results in light of the possible realization of a quasi-1D metal.