▎ 摘 要
Photoacoustic imaging combines the merits of ultrasound imaging and optical imaging, and allows a fascinating imaging paradigm with deeper tissue penetration than optical imaging and higher spatial resolution than ultrasound imaging. Herein, we develop a supramolecular hybrid material composed of graphene oxide (GO) and a pillar[6] arene-based host-guest complex (CP6 superset of PyN), which can be used as an ultrasound (US) and photoacoustic (PA) signal nanoamplifier. Triggered by the near-infrared (NIR) light mediated photothermal effect, CO2 nanobubbles are generated on the surface of GO@CP6 superset of PyN due to the decomposition of the bicarbonate counterions, thus strongly amplifying its US and PA performances. Our study, for the first time, demonstrates enhanced US and PA activity in a supramolecular hybrid material on the basis of host-guest chemistry as a photoacoustic nanoplatform.