• 文献标题:   Cobalt Nanoparticles Embedded into Nitrogen-doped Graphene with Abundant Macropores as a Bifunctional Electrocatalyst for Rechargeable Zinc-air Batteries
  • 文献类型:   Article
  • 作  者:   WANG H, CHEN XY, SUN TN, LI YW, LV XL, LI YH, WANG HG
  • 作者关键词:   cobalt nanoparticle, nitrogendoped graphene, abundant macropore, bifunctional electrocatalyst, znair battery
  • 出版物名称:   CHEMISTRYAN ASIAN JOURNAL
  • ISSN:   1861-4728 EI 1861-471X
  • 通讯作者地址:  
  • 被引频次:   0
  • DOI:   10.1002/asia.202200390 EA MAY 2022
  • 出版年:   2022

▎ 摘  要

Nitrogen doped carbon materials containing transition metal nanoparticles have attracted much attention as bifunctional oxygen electrocatalysts. In this paper, the template etching method is used to obtain the nitrogen-doped graphene with abundant macropores embedded with cobalt nanoparticles (Co@N-C). The prepared Co@NC-800 catalyst has a half-wave potential (E(1/2=)0.835 V) close to Pt/C and good stability in excess of Pt/C for oxygen reduction reaction (ORR). At the same time, the catalyst has good oxygen evolution reaction (OER) performance. In addition, zinc-air batteries (ZABs) based on the Co@NC-800 catalyst show good cycle stability of up to 200000 s and high power density of 73.5 mW cm(-2). The synergistic effect of the integrated component between nitrogen-doped graphene and cobalt nanoparticles as well as the macroporous structure endow Co@NC-800 with abundant exposed active sites and mass/electron transfer capacity, thus leading to the high electrocatalytic activity. This work shows potential for practical applications in electrochemistry.