• 文献标题:   Theoretical study on double-atom catalysts supported with graphene for electroreduction of nitrogen into ammonia
  • 文献类型:   Article
  • 作  者:   YANG WJ, HUANG HY, DING XL, DING Z, WU CC, GATES ID, GAO ZY
  • 作者关键词:   doubleatom catalyst, electrocatalysi, nitrogen reduction reaction, catalytic activity, density functional theory
  • 出版物名称:   ELECTROCHIMICA ACTA
  • ISSN:   0013-4686 EI 1873-3859
  • 通讯作者地址:   North China Elect Power Univ
  • 被引频次:   2
  • DOI:   10.1016/j.electacta.2020.135667
  • 出版年:   2020

▎ 摘  要

Developing electrocatalyst with high catalytic activity for the nitrogen reduction reaction (NRR) is the key step to accelerate the application of electrocatalytic nitrogen fixation. Eight kinds of double-atom Fe catalysts supported with graphene-based substrate (Fe-TMDA/GS, TM = Ti, V, Cr, Mn, Fe, Co, Ni, and Cu) were constructed for electroreduction of nitrogen into ammonia. The bonding mechanism of Fe-transition metal dimer on substrates was studied from the perspectives of orbital hybridization and electron transfer. Based on the analysis of reaction paths and Gibbs free energy variation, the potential determining step of the NRR is the transfer process of the first H+/e(-) pair. Fe-Ti-DA/GS has the highest NRR catalytic activity among the eight kinds of Fe-TMDA/GS, with a Gibbs energy variation of 0.88 eV. Based on the analysis of electron density difference, band structure and work function, electron transfer is the main factor affecting nitrogen adsorption, and the second metal atom improves the catalytic activity of NRR through promoting electron transfer between N-2 and the graphene surface. This theoretical research provides new insights into developing highly efficient electrocatalyst for NRR. (C) 2020 Elsevier Ltd. All rights reserved.