▎ 摘 要
Graphene oxide (GO)-modified sinapinic acid (3,5-dimethoxy-4-hydroxycinnamic acid, SA) (SA@GO) was synthesized and characterized; it was then investigated as a new surface assisted laser desorption/ionization mass spectrometry (SALDI-MS) for proteomics and pathogenic bacteria biosensing. SA@GO could effectively decrease the time necessary for sweet spotting searching, reducing the amount of organic matrix and solvent and enhance the sensitivity. SA@GO shows high performance as a matrix alone without the need to add trifluoroacetic acid (TFA). However, the analysis of the intact bacteria cells shows improvement in the signal intensity (2-5 fold) and offers a low limit of detection. All these analyses could be performed with low concentrations (1-10 fmol) and tiny volumes (0.5-1 mu L). This study demonstrated that the exploration of new hybrid materials is pivotal to achieve high performance and high ionization. Because of the plane of GO, it assists protein-protein interactions that make it undergo softer ionization.