• 文献标题:   Monodisperse CuPt alloy nanoparticles assembled on reduced graphene oxide as catalysts in the transfer hydrogenation of various functional organic groups
  • 文献类型:   Article
  • 作  者:   GANJEHYAN K, NISANCI B, SEVIM M, DASTAN A, METIN O
  • 作者关键词:   alloy nanoparticle, copper, nanocatalyst, platinum, transfer hydrogenation
  • 出版物名称:   APPLIED ORGANOMETALLIC CHEMISTRY
  • ISSN:   0268-2605 EI 1099-0739
  • 通讯作者地址:   Narman Vocat Training High Sch
  • 被引频次:   3
  • DOI:   10.1002/aoc.4863
  • 出版年:   2019

▎ 摘  要

We present herein a new nanocatalyst, namely binary CuPt alloy nanoparticles (NPs) supported on reduced graphene oxide (CuPt-rGO), as a highly active heterogeneous catalyst for the transfer hydrogenation (TH) protocol that is demonstrated to be applicable over the reduction of various unsaturated organic compounds (olefins, aldehydes/ketones and nitroarenes) in aqueous solutions at room temperature. CuPt alloy NPs were synthesized by the co-reduction of metal (II) acetylacetonates by borane-tert-butylamine (BTB) complex in hot oleylamine (OAm) solution and then assembled on reduced graphene oxide (rGO) via ultrasonic-assisted liquid phase self-assembly method. The structure of yielded CuPt NPs and CuPt-rGO nanocatalyst were characterized by TEM, XRD and ICP-MS. The activity of Cu7Pt3-rGO nanocatalysts were then tested for the THs that were conducted in a commercially available high-pressure tube using water as sole solvent and ammonia borane as a hydrogen donor at room temperature. The presented catalytic TH protocol was successfully applied over nitroarenes, olefines and aldehydes/ketones, and all the tested compounds were converted to corresponding reduction products with the yields reaching up to 99% under ambient conditions. Moreover, the Cu7Pt3-rGO nanocatalyst was also reusable in the TH by providing 99% yield after five consecutive runs in TH of nitrobenzene as an example.