• 文献标题:   Large-area suspended graphene on GaN nanopillars
  • 文献类型:   Article
  • 作  者:   LEE C, KIM BJ, REN F, PEARTON SJ, KIM J
  • 作者关键词:   atomic force microscopy, gallium compound, graphene, heat transfer, iiiv semiconductor, nanofabrication, nanolithography, nanostructured material, radiation effect, raman spectra, scanning electron microscopy, sputter etching, thermal conductivity, wide band gap semiconductor
  • 出版物名称:   JOURNAL OF VACUUM SCIENCE TECHNOLOGY B
  • ISSN:   2166-2746
  • 通讯作者地址:   Korea Univ
  • 被引频次:   9
  • DOI:   10.1116/1.3654042
  • 出版年:   2011

▎ 摘  要

The authors have demonstrated large-area suspended graphene on GaN nanopillars predefined by nanosphere lithography and inductively coupled plasma etching. The graphene was successfully suspended over large areas without ripples and corrugations. Scanning electron microscopy, atomic force microscopy and micro-Raman spectroscopy were used to characterize the properties of the suspended graphene on nanopillars. The thermal properties of the suspended and supported graphene were investigated by varying the underlying GaN nanopilllar geometries from flat-top to sharp-cone morphologies and heating the resulting structures via irradiation with laser powers of 1.53 mW, 8.03 mW, and 16.19 mW. The heat transfer was effective even when the contact area between the suspended graphene and the supporting substrate was small, due to the high thermal conductivities of graphene and GaN. The extremely high thermal conductivity of the graphene can improve the thermal management in GaN-based high power electronic and optoelectronics devices, a critical factor for their long-term reliability. (C) 2011 American Vacuum Society. [DOI: 10.1116/1.3654042]