• 文献标题:   Synergetic Effects toward Catalysis and Confinement of Magnesium Hydride on Modified Graphene: A First-Principles Study
  • 文献类型:   Article
  • 作  者:   ZHANG J, XIA GL, GUO ZP, ZHOU DW
  • 作者关键词:  
  • 出版物名称:   JOURNAL OF PHYSICAL CHEMISTRY C
  • ISSN:   1932-7447
  • 通讯作者地址:   Univ Wollongong
  • 被引频次:   1
  • DOI:   10.1021/acs.jpcc.7b05848
  • 出版年:   2017

▎ 摘  要

Graphene nanosheet has recently demonstrated catalytic and agglomeration blocking effects toward MgH2 nanoparticles. Nevertheless, there is a very limited understanding of the relationship between the structural characteristics of graphene nanosheet and the hydrogen sorption properties of MgH2 nanoparticles. Using first-principles calculations, we investigate the structural, energetic, and electronic properties of MgH2 clusters supported on pristine and modified graphene with carbon vacancy or heteroatom (B, N, Si, P, S, Fe, Co, Ni, and Al) doping. The results show that the formation ability of vacancy and heteroatom defects in the graphene lattice is enhanced in the order of vacancy, Al, Ni, S, Co, Fe, Si, P, B, and N. Among them, the B- and P-doped graphene nanosheets, especially the B-doped one, exhibit remarkable synergetic effects toward enhancing the catalysis and confinement of MgH2 hydride. Analysis of electronic structures shows that the direct bonding between MgH2 clusters and B/P-doped graphene and the electron transfer from MgH2 clusters into the B/P-doped graphene are most likely to be the underlying reasons for the improved dispersion and enhanced dehydrogenation properties of MgH2 clusters.