• 文献标题:   Facile synthesis of MoS2/reduced graphene oxide composites for efficient removal of Cr(VI) from aqueous solutions
  • 文献类型:   Article
  • 作  者:   JIANG XL, LUO HJ, YIN YW, ZHOU WJ
  • 作者关键词:  
  • 出版物名称:   RSC ADVANCES
  • ISSN:   2046-2069
  • 通讯作者地址:   South China Univ Technol
  • 被引频次:   17
  • DOI:   10.1039/c7ra03531d
  • 出版年:   2017

▎ 摘  要

Cr(VI) as a common heavy metal contaminate has attracted much attention for its high toxicity and bioaccumulation. In this study, novel adsorbents, MoS2/reduced graphene oxide composites (MoS2/rGO), were prepared via a facile solvothermal process and effectively used for Cr(VI) adsorption. The MoS2/rGO was characterized by SEM, TEM, XRD, BET and XPS. Results showed that the MoS2 layers had been successfully grown on the surface of reduced graphene oxide layers. MoS2/rGO exhibited an enhanced surface area of 81.34 m(2) g(-1), more than rGO (57.20 m(2) g(-1)) and MoS2 (1.57 m(2) g(-1)). Batch adsorption experiments of Cr(VI) were also investigated. The pseudo-second order model best described the adsorption kinetics. Effective Cr(VI) removal occurred in a wide pH range from 2.0 to 10.0. The excellent adsorption capacity at 25 degrees C, calculated from the Langmuir isotherm model, was 268.82 mg g(-1) at pH 2.0 and 192.63 mg g(-1) at pH 4.6. The electrostatic attraction and reduction on the adsorbents surface was considered to be the possible mechanism of Cr(VI) removal. These studies revealed the potential application of MoS2/rGO for Cr(VI) removal.