▎ 摘 要
Designing composite nanomaterials that display multiple antibacterial mechanisms offers new prototype against bacterial resistance. This study presents a multi-component composite-based nanofiber embodying the antibacterial and physiochemical properties of silver nanoparticles (Ag NPs), graphene oxide (GO), chitosan (CS), and curcumin (CUR). Physiologically stable PEGylated GO-Ag NP-CUR nanocomposites were synthesized, with the PEGylated GO serving as the template. The as-synthesized nanocomposite was incorporated into the CS/polyvinyl alcohol (PVA) nanofiber. The successful formation and stability of the PEGylated-GO-Ag NP-CUR composite nanofiber were characterized by various techniques. The antibacterial potential of the PEGylated-GO-Ag NP-CUR composite nanofiber was evaluated and showed an enhanced antibacterial effect compared to various nanoformulations. The plausible antibacterial mechanism of the PEGylated-GO-Ag NP-CUR nanofiber was determined and depicted herein. The presence of GO in the composite nanofiber enhances its mechanical properties compared to CS/PVA nanofiber, with an ultimate tensile strength (UTS) of 25 MPa compared to 7.2 MPa and a Young's modulus (E) of 363.7 MPa compared to 73 MPa. The biocompatibility of the nanofiber mat was confirmed by in vitro cell viability assay. Therefore a facile approach for the design of a biocompatible wound dressing with enhanced mechanical and antibacterial property was explored and detailed herein.