▎ 摘 要
With the great demand in the applications of flexible electronics, the methods leading to improvements in the electrical and mechanical performance have been widely investigated. In this work, we firstly prepared a hybrid composite ink using Ag nanoparticles and graphene. Then, a hot-press sintering process was deployed to obtain the desired electrical tracks which could be applied in flexible electronics. We have systematically investigated the effects of sintering time, pressure and temperature, as well as the different percentage of weight (wt%) of graphene for the electrical and mechanical performance of sintered electrical tracks. We achieved reasonably low electrical resistivity at low sintering temperature (120 degrees C). Specifically, the resistivity reaches 6.19 x 10(-8) Omega.m which is just 3.87 times higher than the value of bulk silver. Additionally, the prepared hybrid composite ink obtained better electrical reliability against bending test comparing with Ag nanoparticle ink. Finally, the optimal wt% of graphene and potential effect to the electrical and mechanical performance were also investigated.