• 文献标题:   Pressure-Controlled Encapsulation of Graphene Quantum Dots into Liposomes by the Reverse-Phase Evaporation Method
  • 文献类型:   Article
  • 作  者:   LIU CH, LIU YY, CHANG Q, SHU QF, SHEN N, WANG HF, XIE YJ, DENG XY
  • 作者关键词:  
  • 出版物名称:   LANGMUIR
  • ISSN:   0743-7463
  • 通讯作者地址:  
  • 被引频次:   4
  • DOI:   10.1021/acs.langmuir.1c02338
  • 出版年:   2021

▎ 摘  要

Ultrasmall nanoparticles (USNPs) with sizes below 10 nm have shown great potentials in medical applications owing to their outstanding physical, chemical, optical, and biological properties. However, they suffer from a rapid renal clearance and biodegradation rate in the biological environment due to the small size. Liposomes are one of the most promising delivery nanocarriers for loading USNPs because of their excellent biocompatibility and lipid bilayer structure. Encapsulation of USNPs into liposomes in an efficient and controllable manner remains a challenge. In this study, we achieved a high loading of graphene quantum dots (GQDs, similar to 4 nm), a typical USNP, into the aqueous core of liposomes (45.68 +/- 1.44%), which was controllable by the pressure. The GQDs-loaded liposomes (GQDs-LPs) exhibited a very good aqueous stability for over a month. Furthermore, indocyanine green (ICG), an efficient near-infrared (NIR) photothermal agent, was introduced in the GQDs-LP system that could convert NIR laser energy into thermal energy and break down the liposomes, causing the release of GQDs in 6 min. Moreover, this NIR light-controlled release system (GQDs-ICG-LPs) also exhibited a good photothermal therapeutic performance in vitro, and 75% of cancer cells were killed at a concentration of 200 mu g/mL. Overall, the successful development of the NIR light-controlled release system has laid a solid foundation for the future biomedical application of USNPs-loaded liposomes.