▎ 摘 要
It is a great challenge to design a nanomaterial catalyst on a large scale at low cost with high activity and stability. To establish strong interactions between metal species and graphene for the promotion of electron transmission in the Fenton reaction, in this work, we proposed a polymer templated method for Fe/graphene-based Fenton-like catalyst synthesis: a biocompatible polymer bonded with iron oxide was used as a precursor to prepare an Fe3O4@Fe/graphene aerogel (MGA). The MGA was demonstrated to have a surface area of 145 m(2) g(-1) and a structure different from previously reported Fe/graphene-based Fentonlike catalysts: (i) besides Fe3O4, another main iron species, a-Fe, was formed, and (ii) Fe-C bonds were generated, rather than only Fe-O-C bonds. In addition to the Fe-O-C linkage, Fe-C bonds were also able to function as dual-reaction centers in Fenton-like reactions. Compared with similar graphene-based catalysts prepared using hydrothermal methods, the MGA synthesized in this work achieved higher antibiotic (similar to 15%) and total organic carbon (similar to 20%) removal and lower iron leakage due to its fast electron transfer through the strong combination of p-p and p-Fe interactions between the catalyst and pollutants. This strategy could be scaled up easily and applied for the preparation of graphene doping with various metals for various applications, including efficient water treatment.