▎ 摘 要
A highly sensitive and selective label-free electrochemical immunosensor was successfully fabricated for measuring prostate-specific antigen (PSA). A composite of chitosan, graphene, ionic liquid and ferrocene (CS-GR-IL-Fc) was drop casted onto a screen-printed carbon electrode (SPCE) and frozen to create a layer of 3D porous cryogel (CS-GR-IL-Fc cry) which was decorated with gold nanoparticles (AuNPs). The biocompatibility and porosity of the cryogel increased the surface area available for AuNPs loading via amino groups and the population of anti-PSA, immobilized on the AuNPs via chemisorption, could be increased. The CS-GR-IL-Fc cry displayed excellent conductivity, enhancing electron transfer and amplifying the current signal. Differential pulse voltammetry was employed to determine PSA by measuring the reduction in the Fc oxidation peak current in response to the formation of PSA/anti-PSA immunocomplex. Under the optimized incubation time and electrolyte pH, the developed immunosensor displayed excellent analytical performances, including a wide linear range at concentrations from 1.0 x 10(-7) to 1.0 x 10(-1) ng mL(-1), with a very low limit of detection of 4.8 x 10(-8) ng mL(-1) and good reproducibility (relative standard deviation of <4.6%, n = 6), stability (90% sensitivity within 20 days), repeatability (12 cycles of binding-rebinding, the sensitivity > 90%) and selectivity. The results obtained from the device for the determination of PSA in human serum were consistent with results from the enzyme-linked immunosorbent assay (P > 0.05), and indicated the promising potential of the proposed immunosensor in clinical diagnosis.