• 文献标题:   In Situ Synthesis of Monomer Casting Nylon-6/Graphene-Polysiloxane Nanocomposites: Intercalation Structure, Synergistic Reinforcing, and Friction-Reducing Effect
  • 文献类型:   Article
  • 作  者:   LI CJ, XIANG M, ZHAO XW, YE L
  • 作者关键词:   monomer casting nylon6 mc pa6, graphene nanosheets gn, polysiloxane, intercalation structure, synergistic reinforcing frictionreducing effect
  • 出版物名称:   ACS APPLIED MATERIALS INTERFACES
  • ISSN:   1944-8244
  • 通讯作者地址:   Sichuan Univ
  • 被引频次:   19
  • DOI:   10.1021/acsami.7b11399
  • 出版年:   2017

▎ 摘  要

On the basis of the industrialized graphene nanosheets (GNs) product, we synthesized monomer casting nylon-6 (MC PA6)/GN-3-aminopropyl-terminated poly(dimethylsiloxane) (APDMS) nanocomposite in situ through the anchoring effect of APDMS onto the GN surface. APDMS/PA6 molecules were confirmed to intercalate into the GN layers by the formation of strong interfacial interactions. The intercalation ratio and the average layer thickness of the grafted GN sample decreased in the presence of APDMS. Moreover, for MC PA6/GN APDMS nanocomposite, GN APDMS was uniformly distributed in the matrix and no phase separation was observed. The size of spherical APDMS particles was obviously reduced compared with that of MC PA6/APDMS composite, revealing a strong interaction between APDMS and GN and the enhancement of compatibility in the composite system. Compared with neat MC PA6, the addition of GN APDMS resulted in 12% increase in the tensile strength and 37% increase in the impact strength; meanwhile, increase in both the storage modulus (E') and the glass transition temperature (T-g) indicated synergistic reinforcing and toughening effect of GN APDMS on MC PA6. Furthermore, over 81 and 48% reduction in the friction coefficient and the specific wear rate, respectively, was achieved for the nanocomposite, and the worn surface displayed flat and smooth features with a uniform depth distribution, a low annealing effect, and a reduced friction heat, further confirming the synergistic friction-reducing effect of GN APDMS on MC PA6.