▎ 摘 要
Analysis of graphene nanoplatelets (GPLs) reinforced cylindrical shell subjected to thermo-mechanical loads is studied in this paper based on shear deformation theory. Halpin-Tsai micromechanical model and rule of mixtures are used for calculation of effective material properties of composite materials with different distributions of reinforcements including uniform symmetric and asymmetric distributions for nanoplatelet material. The various distributions are included UD (uniform distribution of GPLs along the thickness direction), FG-O (linear variation of GPLs, where highest amount is locates at middle layer) and FG-X(linear variation of GPLs, where highest amount is locates at top and bottom layers). The shear strains especially at both ends of cylindrical shell are included in our formulation using the two-dimensional first-order shear deformation theory (FSDT). Minimum total potential energy principle is used to derive the governing equations using Hooke's law and application of Euler equations using the functional of the system. Eigenvalue and eigenvector method is used for solution of the governing equations. The radial and axial displacements and various components of stress are calculated in terms of number of layers, GPLs weight fraction, thermal loading, various distributions of reinforcement and coefficient of the elastic foundation. The numerical results indicate that maximum and minimum stresses are obtained for FG-O and FG-X distributions. Also, the biggest and lowest radial displacements are obtained for UD and FG-X distributions, respectively.