▎ 摘 要
Mercury speciation was achieved using a nanocomposite, consisting of graphene quantum dots (GQDs) and TiO2 nanoparticles, to mediate photo-degradation of mercurial species into the Hg cold vapor detected by atomic spectrometry. Sample solution (containing Hg2+, CH3CH2Hg, and CH3Hg at hundreds of ng L-1) was placed in quartz tube containing formic acid solution (2% v/v) and microliter aliquot of GQDs/TiO2 nanocomposite dispersion (0.6 mg of nanocomposite). The tube was placed inside a photochemical reactor then, adapted to the mercury-dedicated spectrometer. Quantitative speciation was achieved taking advantage of the differences in UV photo-degradation kinetics: Hg2+ (5 min), CH3CH2Hg (9 min) and CH3Hg (13 min). Gas-chromatography cold vapor atomic fluorescence spectrometry was used to confirm the evolution of the reactions over time during photo-reaction. The limits of detection were 10 ng L-1 for CH3CH2Hg and 7 ng L-1 for Hg2+ and CH3Hg. (C) 2020 Elsevier B.V. All rights reserved.