▎ 摘 要
Graphene, a single atomic sheet of sp(2)-bonded carbon atoms arranged in a honeycomb lattice, exhibits extraordinary electrical and mechanical properties, attracting much attention in both academia and industry. The preparation of high quality large-area graphene and the tuning of graphene electronic properties are important topics in this field. In this feature paper, we review our recent work on epitaxial graphene (EG) on SiC(0001). First, we introduce the bottom-up growth mechanism of the first few EG layers on SiC(0001), and the modification of graphene electronic properties by means of surface transfer doping with electron withdrawing materials (F-4-TCNQ and MoO3). Next, we summarize the adsorption behaviors of organic (PTCDA, ClAlPc, and C60F48) and inorganic (bismuth) materials on EG/SiC(0001). Finally, as an example of tuning the electronic properties of graphene by reducing its dimensionality, we demonstrate the molecular self-assembly of atomically precise armchair graphene nanoribbons with varying widths and electronic structures.