▎ 摘 要
This paper investigates the parametric instability of functionally graded graphene reinforced nanocomposite plates that undergo a periodic uniaxial in-plane force and a uniform temperature rise. The plate is composed of multiple graphene platelet reinforced composite (GPLRC) layers in which graphene platelets (GPLs) are uniformly distributed in each individual layer with GPL concentration varying layer-wise across the plate thickness. The modified Halpin Tsai model that takes into account the GPL geometry effect is employed to calculate the Young's modulus of the GPLRC. Based on the first-order shear deformation theory, the governing equations are deduced and then are solved by using the differential quadrature approach integrated with the Bolotin's method. A parametric study is undertaken to show the influences of GPL distribution pattern, concentration and geometry, temperature change, static in-plane force, plate geometry and boundary condition on the parametric instability of functionally graded multilayer GPLRC plates. It is found that the addition of a small amount of GPL reinforcements considerably increases the critical budding load and natural frequencies but reduces the size of unstable region. The reinforcing effect is the best when the surface layers of the plate are GPL-rich. (C) 2017 Elsevier Ltd. All rights reserved.