▎ 摘 要
Herein, polypyrrole/titanium oxide/reduced graphene oxide (PTi/r-GO) electrodes were prepared and successfully applied for the photoelectrocatalytic (PEC) degradation of methyl orange (MO) under visible light. Polypyrrole-TiO2 composites rich in p-n heterojunctions were first prepared, then modified with r-GO to improve the electrical conductivity and facilitate charge separation under visible light irradiation. The obtained PTi/r-GO composites were then deposited onto a titanium mesh, which served as the working electrode in PEC experiments. A MO removal efficiency of 93% was achieved in 50 min using PTi/r-GO electrode under PEC conditions (Xe lamp, lambda > 420 nm, bias of 0.6 V, 0.1 M Na2SO4 electrolyte), which was far higher than MO removal efficiencies under electrocatalytic oxidation (22%) or photocatalytic oxidation (47%) conditions. This confirmed that excellent activity of the PTi/r-GO electrode under PEC conditions was due to a combination of electrochemical and photocatalytic oxidation processes (involving center dot OH and center dot O-2(-) generation). Further, PTi/r-GO was very stable under the applied PEC conditions, with the MO removal efficiency remaining >90% after five cycles. PEC degradation pathways for MO on PTi/r-GO were explored, with a number of key intermediates in the MO mineralization process identified. Results demonstrate that PEC electrodes combining p-type polypyrrole, n-type TiO2 and rGO are very effective in the treatment of hazardous organic compounds in wastewater.