• 文献标题:   Highly efficient removal of Se(IV) using reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO): selenium removal mechanism
  • 文献类型:   Article, Early Access
  • 作  者:   SUN FY, ZHU YH, LIU XY, CHI ZF
  • 作者关键词:   graphene oxide, nanoscale zerovalent iron, se iv removal, reaction mechanism
  • 出版物名称:   ENVIRONMENTAL SCIENCE POLLUTION RESEARCH
  • ISSN:   0944-1344 EI 1614-7499
  • 通讯作者地址:  
  • 被引频次:   0
  • DOI:   10.1007/s11356-022-24226-8 EA NOV 2022
  • 出版年:   2022

▎ 摘  要

Se(IV) removal using nanoscale zero-valent iron (nZVI) has been extensively studied. Still, the synergistic removal of Se(IV) by reduced graphene oxide-supported nanoscale zero-valent iron (nZVI/rGO) has not been reported. In this study, nZVI/rGO was successfully synthesized for Se(IV) removal from wastewater. The effects of different environmental conditions (load ratio, dosage, initial pH) on Se(IV) removal by nZVI/rGO were investigated. When the load ratio is 10%, the dosage is 0.3 g/L, the initial pH is 3, and the removal rate is 99%. The adsorption isotherm and kinetics accorded with the Langmuir isotherm and first-order kinetics models (R-2 > 0.99). The fitted maximum adsorption capacity reached up to 173.53 mg/g. NZVI/rGo and Se(IV) is a spontaneous endothermic reaction (Delta G < 0, Delta H > 0) and is characterized by EDS, XRD, and XPS before and after the reaction, to further clarify the reaction mechanism. The XPS narrow spectrum analysis suggested that Se(IV) was reduced to elemental selenium (Se(0)), while the intermediate Fe(II) was oxidized to form hydroxide precipitation. Therefore, nZVI/rGO was favored for Se-contaminated wastewater remediation.