• 文献标题:   Carbide-bonded graphene coated zirconia for achieving rapid thermal cycling under low input voltage and power
  • 文献类型:   Article
  • 作  者:   WU M, ZHANG L, CABRERA ED, PAN JJ, YANG H, ZHANG D, YANG ZG, YU JF, CASTRO J, HUANG HX, LEE LJ
  • 作者关键词:   graphene, chemical vapor deposition, zirconia, electrothermal response, rapid thermal cycling
  • 出版物名称:   CERAMICS INTERNATIONAL
  • ISSN:   0272-8842 EI 1873-3956
  • 通讯作者地址:   South China Univ Technol
  • 被引频次:   0
  • DOI:   10.1016/j.ceramint.2019.08.146
  • 出版年:   2019

▎ 摘  要

Despite major advancement in coating graphene layers at material surfaces, challenges still exist towards achieving rapid heating and cooling under low energy consumption. Herein, atmospheric pressure chemical vapor deposition (APCVD) method was adopted to coat carbide-bonded graphene at the surface of zirconia substrate with a 2.7 cm diameter and a 1 cm thickness. The graphene coated zirconia substrate can achieve rapid thermal cycling with as high as approximately 50 degrees C/s of average heating rate at 150-320 degrees C temperature range using a low input voltage (12 V) and power (48 W). That is mainly due to the formation of highly qualified graphene and single-wall carbon nanotubes at the carburization layer, which is confirmed by the Raman spectra. The excellent electrothermal response characteristics is expectantly useful for rapid thermal cycling in injection molding thin-wall parts with high processing temperature (higher than 250 degrees C) under operation safety and low energy consumption, which is obviously absent in this emerging research area.