• 文献标题:   Nanoscale Zero-Valent Iron Decorated on Bentonite/Graphene Oxide for Removal of Copper Ions from Aqueous Solution
  • 文献类型:   Article
  • 作  者:   SHAO JC, YU XN, ZHOU M, CAI XQ, YU C
  • 作者关键词:   zerovalent iron, bentonite, graphene oxide, copper ion, adsorption
  • 出版物名称:   MATERIALS
  • ISSN:   1996-1944
  • 通讯作者地址:   Wenzhou Univ
  • 被引频次:   6
  • DOI:   10.3390/ma11060945
  • 出版年:   2018

▎ 摘  要

The removal efficiency of Cu(II) in aqueous solution by bentonite, graphene oxide (GO), and nanoscale iron decorated on bentonite (B-nZVI) and nanoscale iron decorated on bentonite/graphene oxide (GO-B-nZVI) was investigated. The results indicated that GO-B-nZVI had the best removal efficiency in different experimental environments (with time, pH, concentration of copper ions, and temperature). For 16 hours, the removal efficiency of copper ions was 82% in GO-B-nZVI, however, it was 71% in B-nZVI, 26% in bentonite, and 18% in GO. Bentonite, GO, B-nZVI, and GO-B-nZVI showed an increased removal efficiency of copper ions with the increase of pH under a certain pH range. The removal efficiency of copper ions by GO-B-nZVI first increased and then fluctuated slightly with the increase of temperature, while B-nZVI and bentonite increased and GO decreased slightly with the increase of temperature. Lorentz-Transmission Electron Microscope (TEM) images showed the nZVI particles of GO-B-nZVI dispersed evenly with diameters ranging from 10 to 86.93 nm. Scanning electron microscope (SEM) images indicated that the nanoscale iron particles were dispersed evenly on bentonite and GO with no obvious agglomeration. The q(e,cal) (73.37 mgg(-1) and 83.89 mgg(-1)) was closer to the experimental value q(e,exp) according to the pseudo-second-order kinetic model. The q(m) of B-nZVI and GO-B-nZVI were 130.7 mgg(-1) and 184.5 mgg(-1) according to the Langmuir model.