▎ 摘 要
Room-temperature (RT) gas sensing is desirable for battery-powered or self-powered instrumentation that can monitor emissions associated with pollution and industrial processes. This review (with 171 references) discusses recent advances in three types of porous nanostructures that have shown remarkable potential for RT gas sensing. The first group comprises hierarchical oxide nanostructures (mainly oxides of Sn, Ni, Zn, W, In, La, Fe, Co). The second group comprises graphene and its derivatives (graphene, graphene oxides, reduced graphene oxides, and their composites with metal oxides and noble metals). The third group comprises 2D transition metal dichalcogenides (mainly sulfides of Mo, W, Sn, Ni, also in combination with metal oxides). They all have been found to enable RT sensing of gases such as NOx, NH3, H-2, SO2, CO, and of vapors such as of acetone, formaldehyde ormethanol. Attractive features also include high selectivity and sensitivity, long-term stability and affordable costs. Strengths and limitations of these materials are highlighted, and prospects with respect to the development of new materials to overcome existing limitations are discussed.