• 文献标题:   Magneto-transport properties of B-, Si- and N-doped graphene
  • 文献类型:   Article
  • 作  者:   SHIH PH, DO TN, GUMBS G, HUANG DH, PHAM TP, LIN MF
  • 作者关键词:  
  • 出版物名称:   CARBON
  • ISSN:   0008-6223 EI 1873-3891
  • 通讯作者地址:   Ton Duc Thang Univ
  • 被引频次:   2
  • DOI:   10.1016/j.carbon.2019.12.088
  • 出版年:   2020

▎ 摘  要

The effect due to doping by B, Si, N atoms on the magneto-transport properties of graphene is investigated using the generalized tight-binding model in conjunction with the Kubo formula. The crucial electronic and transport properties are greatly diversified by different types of dopant and doping concentrations. The effect of these guest atoms includes opening a band gap, thereby giving rise to rich Landau level energy spectra and consequently a unique quantum-Hall conductivity. The Fermi-energy dependent quantum-Hall effect appears as a step structure having both integer and half-integer plateaus. Doping with Si leads to an occurrence of a zero quantum-Hall conductivity, unlike the plateau sequence for pristine graphene. The predicted dopant- and concentration-enriched quantum-Hall effect for doped graphene can provide useful information for magneto-transport measurements, possible technological and even metrology applications. (C) 2020 Elsevier Ltd. All rights reserved.