▎ 摘 要
We demonstrate improvements in the electrical performance of graphene interconnects with full encapsulation by lattice-matching layered insulator, hexagonal boron nitride (h-BN). A novel layer-based transfer method is developed to assemble the top passivating layer of h-BN on the graphene surface to construct the h-BN/graphene/h-BN heterostructures. The encapsulated graphene interconnects (EGIs) are characterized and compared with graphene interconnects on either SiO2 or h-BN substrates with no top passivating h-BN layer. We observe significant improvements in both the maximum current density and breakdown voltage in EGIs. Compared with the uncovered structures, EGIs also show an appreciable increase (similar to 67%) in power density at breakdown. These improvements are achieved without degrading the carrier transport characteristics in graphene wires. In addition, EGIs exhibit a minimal environment impact, showing electrical behavior insensitive to ambient conditions.