▎ 摘 要
We investigate band structure and transport property of lattice-matched graphene/hexagonal boron nitride (h-BN) heterostructure using the tight-binding approach. It shows that local potentials can significantly modify the band structure and the transport property. A method to individually manipulate the edge states by local potentials is proposed, including shifts and other deformations of edge bands. The two-terminal conductance of each layer is quantized but the interlayer conductance is non-quantized due to band mixing. In addition, we explore the Landau level spectrum in graphene/h-BN nanoribbons under both magnetic field and local potentials. The plateaus-like behavior of the interlayer conductance is observed.