▎ 摘 要
Layered materials, such as graphene, have attracted increasing interests since they can be extensively used in gas sensors, spintronic devices, and transparent electrodes. Although larger size of graphene sheets has been fabricated, in reality, the existence of the defects in layered materials is almost inevitable during the manufacturing process. Here, we performed the state-of-the-art density-functional theory calculations to study the interactions between CO molecule and the pristine and defective graphene layers, with the aim of designing a CO gas sensor with higher sensitivity. The van der Waals interactions predominate the binding between the CO gas and the sensor, and also significantly enhance the stability of the system. The defective graphene strongly interacts with CO, and thus enhances the sensitivity of the graphene and further tunes the electronic and magnetic properties of the entire system. Our computed results clearly demonstrate that the defective graphene could be a good sensor for gas molecules.