▎ 摘 要
Magnetically Separated Ni-Zn ferrite-graphene nanocomposite (NZFG) was prepared through simple microwave hydrothermal method using Ni(NO3)(2) Zn(NO3)(2) and Fe(NO3)(3) as raw material. The phase, structure and morphology of the Ni-Zn ferrite-graphene nanocomposite were characterized by XRD, Raman, TEM/HRTEM, XPS and VSM. The results shown that nearly monodisperse Ni-Zn ferrite nanoparticles of about 13 nm anchored on graphene sheets, a representative hysteresis loop exhibited a superparamagnetic behavior with saturation magnetization values of 28.2 A.m(2).kg(-1), and the values of remanent magnetization and coercivity nearly zero. Photocatalytic activity of Ni-Zn ferrite-graphene nanocomposite show the degradation rate of methylene blue(MB) reached 97.5% under visible light for 90 min in the presence of H2O2 as compared with pure Ni0.5Zn0.5Fe2O4 (51%) due to the reduced the recombination of photo-generated charges with the introduction of graphene. The high recoveries and stable catalytic capability of NZFG demonstrated that NZFG can be reused expediently.