• 文献标题:   Three-dimensional flexible and conductive interconnected graphene networks grown by chemical vapour deposition
  • 文献类型:   Article
  • 作  者:   CHEN ZP, REN WC, GAO LB, LIU BL, PEI SF, CHENG HM
  • 作者关键词:  
  • 出版物名称:   NATURE MATERIALS
  • ISSN:   1476-1122 EI 1476-4660
  • 通讯作者地址:   Chinese Acad Sci
  • 被引频次:   2333
  • DOI:   10.1038/NMAT3001
  • 出版年:   2011

▎ 摘  要

Integration of individual two-dimensional graphene sheets(1-3) into macroscopic structures is essential for the application of graphene. A series of graphene-based composites(4-6) and macroscopic structures(7-11) have been recently fabricated using chemically derived graphene sheets. However, these composites and structures suffer from poor electrical conductivity because of the low quality and/or high inter-sheet junction contact resistance of the chemically derived graphene sheets. Here we report the direct synthesis of three-dimensional foam-like graphene macrostructures, which we call graphene foams (GFs), by template-directed chemical vapour deposition. A GF consists of an interconnected flexible network of graphene as the fast transport channel of charge carriers for high electrical conductivity. Even with a GF loading as low as similar to 0.5 wt%, GF/poly(dimethyl siloxane) composites show a very high electrical conductivity of similar to 10 S cm(-1), which is similar to 6 orders of magnitude higher than chemically derived graphene-based composites(4). Using this unique network structure and the outstanding electrical and mechanical properties of GFs, as an example, we demonstrate the great potential of GF/poly(dimethyl siloxane) composites for flexible, foldable and stretchable conductors(12).