▎ 摘 要
Assuming diffusive carrier transport and employing an effective medium theory, we calculate the temperature dependence of bilayer graphene conductivity due to Fermi-surface broadening as a function of carrier density. We find that the temperature dependence of the conductivity depends strongly on the amount of disorder. In the regime relevant to most experiments, the conductivity is a function of T/T*, where T* is the characteristic temperature set by disorder. We demonstrate that experimental data taken from various groups collapse onto a theoretically predicted scaling function.