▎ 摘 要
The use of graphene quantum dots as biomedical devices and drug delivery systems has been increasing. The nano-platform of pure carbon has shown unique properties and is approved to be safe for human use. In this study, we successfully produced and characterized folic acid-functionalized graphene quantum dots (GQD-FA) to evaluate their antiviral activity against Zika virus (ZIKV) infection in vitro, and for radiolabeling with the alpha -particle emitting radionuclide radium-223. The in vitro results exhibited the low cytotoxicity of the nanoprobe GQD-FA in Vero E6 cells and the antiviral effect against replication of the ZIKV infection. In addition, our findings demonstrated that functionalization with folic acid doesn't improve the antiviral effect of graphene quantum dots against ZIVK replication in vitro. On the other hand, the radiolabeled nanoprobe 223Ra@GQD-FA was also produced as confirmed by the Energy Dispersive X-Ray Spectroscopy analysis. 223Ra@GQD-FA might expand the application of alpha targeted therapy using radium-223 in folate receptor-overexpressing tumors.