▎ 摘 要
The interaction between reinforcing fillers and the elastomeric matrix determines the properties of the elastomeric nanocomposite. In this study, the properties of nanocomposites based on ethylene-propylene-diene monomer (EPDM) rubber compounds with graphene oxide (GO) and reduced GO (rGO) were investigated along with the effect of maleic anhydride (MAH) as a compatibilizing agent. GO-and rGO-containing nanocomposites were prepared using a combination of solution blending and torque rheometry processes. It was found that compositing with rGO reduced the optimal vulcanization times by approximately 5%. The addition of MAH improved the mechanical properties of the nanocomposites containing GO or rGO, with enhancements in elongation by 18 and 11% and in tensile strengths by 5 and 20%, respectively. The results showed good interactions between the nanoparticles and EPDM compounds. However, despite the good physicochemical affinity between MAH and GO, their simultaneous presence in the EPDM compound did not synergistically influence vulcanization and mechanical properties because of the excessive quantity of oxygen-containing functional groups present during the vul-canization process.