▎ 摘 要
Silver@graphene oxide nanocomposite was synthesized through an efficient approach, characterized by FTIR, EDX, and TEM instruments and then was used as adsorbent for imidacloprid removal from water in batch procedure. Effective variants such as contact time, pH, adsorbent dosage, and initial concentration of imidacloprid on procedure by two methods, one at a time and experimental design methods, were studied. Results in optimum conditions based on one at a time experiments is removal of 63% of the pesticide from 50 mL water containing 10 mg/L of imidacloprid by 0.03 g of the adsorbent at pH = 6.6 after 60 min while, experimental design method predict similarity results, 66% uptake of the poison by 0.06 g of the adsorbent in pH = 8. Kinetics and isotherm for adsorption processes follows Freundlich and pseudo-second-order models. Results confirm that Ag@graphene oxide nanocomposite can be applicable for removal of imidacloprid from real polluted water.