▎ 摘 要
Metal-organic layers with ordered structure and molecular tunability are of great potential as heterogeneous catalysts due to their readily accessible active sites. Herein, we demonstrate a facile template strategy to prepare metal-organic layers with a uniform thickness of three metal coordination layers (ca. 1.5nm) with graphene oxide as both template and electron mediator. The resulting hybrid catalyst exhibits an excellent performance for CO2 photoreduction with a total CO yield of 3133mmolg(MOL)(-1) (CO selectivity of 95%), ca. 34 times higher than that of bulky Co-based metal-organic framework. Systematic studies reveal that well-exposed active sites in metal-organic layers, and facile electron transfer between heterogeneous and homogeneous components mediated by graphene oxide, greatly contribute to its high activity. This work highlights a facile way for constructing ultrathin metal-organic layers and demonstrates charge transfer pathway between conductive template and catalyst for boosting photocatalysis. While solar-to-fuel energy conversion is appealing, materials require accessible active sites for reactants and rapid electron transfer steps. Here, authors support ultrathin metal-organic layers with graphene oxide as both template and electron mediator to boost CO2 photoreduction performance.