• 文献标题:   Spectroscopic Study on Ultrafast Carrier Dynamics and Terahertz Amplified Stimulated Emission in Optically Pumped Graphene
  • 文献类型:   Article
  • 作  者:   OTSUJI T, BOUBANGATOMBET S, SATOU A, SUEMITSU M, RYZHII V
  • 作者关键词:   graphene, terahertz, stimulated emission, population inversion, ultrafast carrier dynamic
  • 出版物名称:   JOURNAL OF INFRARED MILLIMETER TERAHERTZ WAVES
  • ISSN:   1866-6892 EI 1866-6906
  • 通讯作者地址:   Tohoku Univ
  • 被引频次:   9
  • DOI:   10.1007/s10762-012-9908-8
  • 出版年:   2012

▎ 摘  要

This paper reviews recent advances in spectroscopic study on ultrafast carrier dynamics and terahertz (THz) stimulated emission in optically pumped graphene. The gapless and linear energy spectra of electrons and holes in graphene can lead to nontrivial features such as negative dynamic conductivity in the THz spectral range, which may lead to the development of new types of THz lasers. First, the non-equilibrium carrier relaxation/recombination dynamics is formulated to show how photoexcited carriers equilibrate their energy and temperature via carrier-carrier and carrier-phonon scatterings and in what photon energies and in what time duration the dynamic conductivity can take negative values as functions of temperature, pumping photon energy/intensity, and carrier relaxation rates. Second, we conduct time-domain spectroscopic studies using an optical pump and a terahertz probe with an optical probe technique at room temperature and show that graphene sheets amplify an incoming terahertz field. Two different types of samples are prepared for the measurement; one is an exfoliated monolayer graphene on SiO2/Si substrate and the other is a heteroepitaxially grown non-Bernal stacked multilayer graphene on a 3C-SiC/Si epi-wafer.