• 文献标题:   Synthesis of Graphene-Based Biopolymer TiO2 Electrodes Using Pyrolytic Direct Deposition Method and its Catalytic Performance
  • 文献类型:   Article
  • 作  者:   KAUR P, FRINDY S, PARK Y, SILLANPAA M, IMTEAZ MA
  • 作者关键词:   tio2g film, chloramphenicol nadolol, photoelectrofenton, rsm, catalytic activity
  • 出版物名称:   CATALYSTS
  • ISSN:  
  • 通讯作者地址:   Lappeenranta Lahti Univ Technol
  • 被引频次:   0
  • DOI:   10.3390/catal10091050
  • 出版年:   2020

▎ 摘  要

The traditional methods used to synthesize graphene layers over semiconductors are chemical-based methods. In the present investigation, a novel photoelectroactive electrode was synthesized using a chitosan biopolymer without the usage of chemicals. A chitosan-biopolymer layer over the surface of TiO2 was generated by electrodeposition. Furthermore, the pyrolysis method was used for the conversion of a biopolymer into graphene layers. The catalytic activity of the fabricated electrodes was investigated by the photo-electro-Fenton (PEF) process to oxidize chloramphenicol and nadolol pharmaceutical drugs in wastewater, remove metals (scandium, neodymium, and arsenic) and degrade real municipal wastewater. The PEF operational parameters (pH, voltage, reaction time, and Fenton catalytic dose) were optimized for the overall degradation of chloramphenicol and nadolol pharmaceutical drugs in wastewater. It was observed that at the optimum process operational parameters it took 40 min to degrade chloramphenicol and nadolol pharmaceutical drugs in wastewater. It was proved that biopolymer-based photoelectroactive novel electrodes render good catalytic activity. Furthermore, the reusability study of fabricated electrodes showed excellent storage and self-healing properties.